Extensions 1→N→G→Q→1 with N=C2 and Q=C23⋊C4

Direct product G=N×Q with N=C2 and Q=C23⋊C4
dρLabelID
C2×C23⋊C416C2xC2^3:C464,90


Non-split extensions G=N.Q with N=C2 and Q=C23⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C23⋊C4) = C23⋊C8central extension (φ=1)16C2.1(C2^3:C4)64,4
C2.2(C23⋊C4) = C22.M4(2)central extension (φ=1)32C2.2(C2^3:C4)64,5
C2.3(C23⋊C4) = C23.9D4central extension (φ=1)16C2.3(C2^3:C4)64,23
C2.4(C23⋊C4) = C22.SD16central stem extension (φ=1)16C2.4(C2^3:C4)64,8
C2.5(C23⋊C4) = C23.31D4central stem extension (φ=1)16C2.5(C2^3:C4)64,9
C2.6(C23⋊C4) = C2≀C4central stem extension (φ=1)84+C2.6(C2^3:C4)64,32
C2.7(C23⋊C4) = C23.D4central stem extension (φ=1)164C2.7(C2^3:C4)64,33
C2.8(C23⋊C4) = C42⋊C4central stem extension (φ=1)84+C2.8(C2^3:C4)64,34
C2.9(C23⋊C4) = C423C4central stem extension (φ=1)164C2.9(C2^3:C4)64,35
C2.10(C23⋊C4) = C42.C4central stem extension (φ=1)164C2.10(C2^3:C4)64,36
C2.11(C23⋊C4) = C42.3C4central stem extension (φ=1)164-C2.11(C2^3:C4)64,37

׿
×
𝔽